Estradiol-17beta stimulates proliferation of mouse embryonic stem cells: involvement of MAPKs and CDKs as well as protooncogenes.
نویسندگان
چکیده
Although the importance of estradiol-17beta (E(2)) in many physiological processes has been reported, to date no researchers have investigated the effects of E(2) on embryonic stem (ES) cell proliferation. Therefore, in the present study, we have examined the effect of E(2) on the DNA synthesis of murine ES (ES-E14TG2a) cells and its related signaling pathways. The results of this study show that E(2) (10(-9) M) significantly increased [(3)H]thymidine incorporation at >4 h and that E(2) (>10(-12) M) induced an increase of [(3)H]thymidine incorporation after 8-h incubation. Moreover, E(2) (>10(-12) M) also increased 5'-bromo-2'-deoxyuridine (BrdU) incorporation and cell number. Indeed, E(2) stimulated estrogen receptor (ER)-alpha and -beta protein levels and increased mRNA expression levels of protooncogenes (c-fos, c-jun, and c-myc). Tamoxifen (antiestrogen) completely inhibited E(2)-induced increases in [(3)H]thymidine incorporation. In addition, estradiol-6-O-carboxymethyl oxime-BSA (E(2)-BSA; 10(-9) M) increased [(3)H]thymidine incorporation at >1 h, and E(2)-BSA (>10(-12) M) increased [(3)H]thymidine incorporation after 1-h incubation. E(2)-BSA-induced increase in BrdU incorporation also occurred in a dose-dependent manner. Tamoxifen had no effect on E(2)-BSA-induced increase of [(3)H]thymidine incorporation. Also, E(2) and E(2)-BSA displayed maximal phosphorylation of p44/42 MAPKs at 10 and 5 min, respectively. E(2) increased cyclins D1 and E as well as cyclin-dependent kinase (CDK)2 and CDK4. In contrast, E(2) decreased the levels of p21(cip1) and p27(kip1) (CDK-inhibitory proteins). Increases of these cell cycle regulators were blocked by 10(-5) M PD-98059 (MEK inhibitor). Moreover, E(2)-induced increase of [(3)H]thymidine incorporation was inhibited by PD-98059 or butyrolactone I (CDK2 inhibitor). In conclusion, estradiol-17beta stimulates the proliferation of murine ES cells, and this action is mediated by MAPKs, CDKs, or protooncogenes.
منابع مشابه
The effect of BMP4 on mouse embryonic stem cell proliferation and differentiation into primordial germ cells
Background and Aim: Artificial gamete production from stem cells is a novel strategy for treatment of infertility. Among various stem cell sources, embryonic stem cells (ESC) can be considered as an appropriate source for in vitro formation of germ cells. In this study we evaluated the effect of BMP4 on proliferation and differentiation of mouse embryonic stem cells into primordial germ cells (...
متن کاملP50: Selective HCRTR2 Antagonism Increases Embryonic Mouse Cortex Neural Stem Progenitor Cells Proliferation
In multiple sclerosis Oligodendrocytes are obliterated by the immune system. neural stem/ progenitor cells (NS/P Cs) have the capacity to differentiate into mature myelinating oligodendrocytes. In embryonic mouse cortex oligodendrocyte progenitor cells (OPCs) are more abundant than the ganglionic eminence. Doing gene set enrichment analysis using DAVID and Panther websites it was shown that Gpr...
متن کاملEstablishment, Culture and Freezing of Human and Mouse Embryonic Stem Cells: a Protocol Guide
Studies of the biology of human embryonic stem cells (hES cells) have developed rapidly over the past nine years since the first reports of their derivation. They clearly offer enormous potential, not only for regenerative medicine, but also for drug discovery and toxicology, human developmental biology and cancer research. Realizing these potentials a better understanding of the fundamental as...
متن کاملPancreatic Differentiation of Sox 17 Knock-in Mouse Embryonic Stem Cells in Vitro
The way to overcome current limitations in the generation of glucose-responsive insulin-producing cells is selective enrichment of the number of definitive endoderm (DE) progenitor cells. Sox17 is the marker of mesendoderm and definitive endoderm. The aim of the present research was to study the potential of Sox17 knock-in CGR8 mouse embryonic stem (ES) cells to differentiate into insulin produ...
متن کاملEvaluation and Comparison of the Expression Levels of the ZBTB16 (Plzf) and ZFP Genes and Alkaline Phosphatase in Three Cell Populations: Mouse Spermatogonial Stem Cells, Embryonic Stem-Like Cells (Es-Like), And Embryonic Stem Cells
Introduction: One of the vital enzymes during spermatogenesis, which is one of the pluripotency factors of stem cells and contributes to maintaining their pluripotency is alkaline phosphatase. ZBTB16 and ZFP proteins are critical elements in stem cells which are expressed in pluripotent stem cells and maintain their pluripotency due to their role in messaging pathways. Material & Methods: The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 290 4 شماره
صفحات -
تاریخ انتشار 2006